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Evaluation of surface electric fields, which is well described by Poisson equation, is of great importance in shielding failure
evaluation in power system. This paper proposes a boundary element method with reduced surface density basis considering the
fact the radius of the transmission line is much smaller than its length. Examples show the method is convergent and is more
accurate than charge simulation method which is often used for the evaluation of surface electric field of long slim conductors.
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I. INTRODUCTION

Evaluation of surface electric fields is of great importance
in computation of the shielding failure in power system that is
modelled by Leader Propagation Method (LPM) [1]. In LPM,
the electric field is treated as electrostatic or quasi-electrostatic
field, and the electric potential is well described by Poisson
equation.

The conductors are assumed in the electrostatic states, the
charges shall distribute on the conductor surface, therefore it
would be more reasonable to apply some surface density based
method, like boundary element method (BEM) [2].

Boundary element method has been widely used in science
and engineering. It is efficient when surface/volume ratio is
typically small and is suitable for unbounded exterior problem.
Considering the fact that the radius of a transmission line
is much smaller compared with its length, we propose a
boundary element method with reduced surface density basis.

II. COLLOCATION BOUNDARY ELEMENT METHOD

Consider a finite horizontal transmission line shown in Fig.
1 as a right cylinder of length 2L0 and radius R0, we set the
axis of the cylinder as x axis and the vertical direction as z
axis. Define the unbounded domain Ω = R3 \ Ω′ where Ω′

denotes the cylinder and we use bold letters to denote points
throughout the whole paper. Let Σ = ΣB

∪
ΣL denotes the

boundary surface of Ω where ΣB the base surface along the
conductor and the ΣL the two sides of the conductor.
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Fig. 1. Exterior Laplace Equation

we choose collocation BEM for its simplicity. The segment
[−L0, L0] on x-axis is first equally discretized as xj =

jhx, j = −Nx, · · · , Nx with hx = L0

Nx
and Nx being a

positive integer. The radius is also equally discretized as
rk = khr, k = 0, . . . , Nr with hr = R0

Nr
and Nr being a

positive integer. Then we discretize the surface by cylinder
element on lateral surface and by ring element on base surface.

The potential and its normal derivative belongs to function
space V , which is defined as

V = {f(x) : fh(x)
∣∣
ΣB

, fh(x)
∣∣
ΣL

are continuous}. (2.1)

Because the radius/length ratio, i.e., R0/L0, is small, it is
reasonable to assume the potential and its normal derivative
to be axial symmetric. A reduced space Vh is introduced as
follows

Vh = {fh(x) : fh ∈ V, fh(x)
∣∣
ejL

= fh(x) is linear,

fh(x)
∣∣
ekB−

= fh(r), fh(x)
∣∣
ekB+

= fh(r) are linear,}

with h := max(hr, hx).
Notice that for f ∈ V and fh ∈ Vh, they are continuous on

lateral ΣL or base surface ΣB , but they are not necessarily
continuous over the whole surface Σ, especially at circles
where the lateral and base surface intersects. Generally speak-
ing, the normal derivative is discontinuous at the intersection
circles due to discontinuity in normal vector. To treat the
discontinuity, we apply discontinuous element [2] for elements
that include the intersection circles, i.e., e±Nx

L , eNr

B±.
Define an interpolation operator P : V → Vh as follows:

(Pf)(xi) = f(xi), ∀ xi ∈ Λ, ∀f ∈ V. (2.2)

We omit ˜ in (2.2) for sake of simplicity. Then we try to
find un,h ∈ Vh, which is an approximation to un, such that

α(xi) (Pu)(xi) +

∮
Σ

(Pu)(y) ∂nyG(xi,y) dSy =∮
Σ

G(xi,y) un,h(y) dSy, ∀ xi ∈ Λ.

The above equation is written in matrix form as

[A,B]

(
τ
2(Nr+1)

η
2Nx+1

)
= ϕN×1 (2.3)



where τ
2(Nr+1)

is a column vector of the surface densities
on both undersides and η2Nx+1 is a column vector of the
lateral surface densities. Matrix CN×N = [A,B] is the
coefficient matrix, with its entries Cij representing potential
at xi generated by the j-th unit vector (τT

2(Nr+1)
, ηT

2Nx+1
) =

(0, . . . , 0, 1, 0, . . . , 0). The formation of coefficient matrix
involve two kinds of surface integral, i.e., ring element surface
integral on underside and cylindrical element integral on lateral
surface. Using the symmetry property, the surface integral can
be simplified, which can help reduce computation cost. As
is common in BEM, singular/nearly-singular surface integral
has to be dealt with very carefully, while for regular integral,
Guassian quadrature is applicable.

III. NUMERICAL RESULTS

A. Convergene of CBEM

Example 1 Consider a finite cylinder without ground. The
cylinder is specified as R0 = 0.5, L0 = 10. We choose the
exact solution uext(x) = 1

|x| as a benchmark. The boundary
condition is thus prescribed as g(x) = uext

∣∣
Σ

. To resolve the
potential on unbounded domain Ω by CBEM, we just need to
solve normal derivative distribution, i.e. ∂nuext, on surface.
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Fig. 2. Convergence results of CBEM in example 1. (left) exact normal
derivative distribution on surface; (right) errors eh with different mesh h.

From Fig. 2, we can see that eh diminishes uniformly as
mesh size h goes to zero. Then the numerical solution uh

n

converges uniformly.

B. Comparison of CBEM and CSM

Apart from CBEM, CSM is a favorable alternative in elec-
tromagnetic computation due to its simplicity and efficiency
[4], [3], and is suitable for long slim conductors. We can
apply CSM and place simulation line charge along the central
axis. The line charge density is assumed to be a piecewise
linear function along the axial direction. As stated before,
although CSM can solve the Laplace equation efficiently,
however it may cause some unphysical phenomenon that will
be illustrated in Example 2.

Example 2 Consider a finite cylinder without ground. The
cylinder is specified with R0 = 1.68×10−2. Constant Dirichlet
boundary condition is set as g(x) = 5× 104.

Some convergence results of CBEM and CSM are proposed
when L0=10. Fig. 3 shows the normal derivative uh

n by CBEM
versus the x-axis on lateral surface and radial direction on
underside surface with different mesh size h. Fig. 4 shows the
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Fig. 3. Normal derivative uh
n with different mesh h by CBEM in Example

2. (left) uh
n along the x-axis on lateral surface; (right) uh

n in r direction on
underside surface.
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Fig. 4. Line charge density Qh by CSM in Example 2. (left) Qh verse x
with fine mesh h = 1/64; (right) Qh verse x near right end with different
mesh h.

line charge density Qh by CSM along the right half segment
and the variance of Qh near the right end for x ∈ [9.5, 10].
It can be concluded that surface charge density by CBEM
converges uniformly while line charge density by CSM only
converges pointwisely. The nonphysical oscillation by CSM in
line charge density near cylinder ends may be caused mainly
by the disregard of the underside charge.

IV. CONCLUSIONS

This paper proposes a boundary element method with
reduced surface density basis considering the fact that the
radius of a transmission line is much smaller compared with its
length. Examples show the method is convergent and is more
accurate than charge simulation method which is often used
to compute the surface electric field for long slim conductors.
More comparisons will be given in the full version manuscript.
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